Critical behaviour of the two-dimensional biaxial next-nearest-neighbour Ising model: series expansions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 201495
(http://iopscience.iop.org/0305-4470/20/6/032)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 16:31

Please note that terms and conditions apply.

Critical behaviour of the two-dimensional biaxial next-nearest-neighbour Ising model: series expansions

J Oitmaa and M J Velgakis
School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia

Received 28 July 1986

Abstract

The critical behaviour of an Ising model with competing first- and third-nearestneighbour interactions ('biaxial next-nearest-neighbour Ising' or BNNNI model) on the square lattice is investigated by high- and low-temperature series.

1. Introduction

The study of Ising systems with further-neighbour interactions, particularly competing interactions, continues to be an active area of research (e.g. Selke 1984 and references therein). The full understanding of the occurrence and nature of spatially modulated phases, both commensurate and incommensurate with the lattice, in such simple models is a necessary first step to the understanding of such phenomena in real systems.

One model which has been extensively studied is the axial next-nearest-neighbour Ising (or anNnI) model. This model does exhibit both commensurate and incommensurate modulated phases and an extremely rich phase diagram. In three dimensions the model has a finite-temperature Lifshitz point.

A related model, which has received far less attention, has competing nearest- and next-nearest-neighbour interactions along two of the lattice directions. We choose to call this the biaxial next-nearest-neighbour Ising model or bNNNI model. In two dimensions this is, of course, an isotropic version of the ANNNI model and there have been some previous studies of this case. The three-dimensional version, consisting of ferromagnetically coupled planes, is expected to exhibit a 'biaxial Lifshitz point' and is of interest for this reason. However in the present paper we concentrate on the two-dimensional case, leaving the three-dimensional version for future work.

The Hamiltonian of the model, which is illustrated in figure $1(a)$, is given by

$$
\begin{equation*}
\mathscr{H}=-J \sum_{\langle i j\rangle} s_{i} s_{j}-J^{\prime} \sum_{[i j]} s_{i} s_{j} \tag{1}
\end{equation*}
$$

where the first sum is over nearest-neighbour pairs and the second sum is over next-nearest-neighbour pairs in the axial directions (actually third neighbours). In this paper we consider only the zero-field case. Because the free energy is an even function of J we may, without loss of generality, take this interaction to be ferromagnetic $(J>0)$.

For $J^{\prime}>-\frac{1}{2} J$ the ground state is ferromagnetic and the transition from the ordered phase to the disordered phase is expected to be of the universal 2D Ising type. At the point $J^{\prime}=-\frac{1}{2} J$ the ground state is infinitely degenerate, with a non-zero entropy, and consequently the critical temperature will drop to zero at this point. For $J^{\prime}<-\frac{1}{2} J$ the
antiferromagnetic interactions are sufficiently strong to stabilise two types of ground state, the 'chessboard' and 'staircase' configurations, shown in figure $1(b)$. Both of these structures can be regarded as commensurate modulated structures with wavevector in the diagonal direction $q=\left(\frac{1}{4}, \frac{1}{4}\right)$. These two states have the same energy but it can be argued that at low but non-zero temperature a 'chessboard-like' structure will be favoured because of higher entropy and hence lower free energy (Selke and Fisher 1980). The nature of the transition, or sequence of transitions, from this ordered phase to the high-temperature disordered phase is uncertain. Early Monte Carlo work (Hornreich et al 1979, Selke and Fisher 1980) indicated a transition from the commensurate phase to an incommensurate phase followed by a second transition to the disordered phase, this transition presumably being of Kosterlitz-Thouless type. However, more recent Monte Carlo studies by Landau and Binder (1985) show a single first-order transition directly from the commensurate ordered phase to the disordered phase, without the presence of an intermediate phase. The two possible forms of the phase diagram are shown in figure $2(a)$.

An alternative way of exhibiting the phase diagram of the model is via the lines of singularities of the free energy per spin $f\left(K, K^{\prime}\right)$ where $K=J / k T$ and $K^{\prime}=J^{\prime} / k T$. Since for $K^{\prime}=0$, or for $K=0$, the model reduces to the nearest-neighbour square lattice problem there will be singularities of the Onsager type at the four symmetrically located points $\left(\pm K_{0}, 0\right),\left(0, \pm K_{0}\right)$ with $K_{0}=0.44068 \ldots$, as shown in figure $2(b)$. There will be a pair of critical lines passing through these points and asymptotically approaching the lines $K^{\prime}= \pm \frac{1}{2} K$. There will be a branch, or possibly two branches, in the lower half-plane, as shown.

Figure 1. (a) The interactions of the two-dimensional BNNNI model. (b) The two types of ground state for $J^{\prime}<-\frac{1}{2} J$.

Figure 2. (a) The expected variation of transition temperature with $\alpha=J^{\prime} / J$, showing the two possible pictures for $\alpha<-0.5$. (b) The lines of singularities of the free energy $f\left(K, K^{\prime}\right)$. The lower branch may be a single line of first-order transitions or two second-order lines.

In the present paper we investigate the properties of this system by the technique of exact series expansions. We first derive and analyse high-temperature series for the wavevector-dependent susceptibility $\chi(\boldsymbol{q})$. This leads to an accurate determination of the critical temperature over most of the ferromagnetic region. Over most of the modulated region, $K^{\prime}<-\frac{1}{2} K$, we are able to locate a consistent singularity in a $\chi(\boldsymbol{q})$ with non-zero wavenumber and there is some evidence that the singularity is of the Kosterlitz-Thouless form. This then tends to support the picture of two transitions rather than a single first-order transition. To test this question further we derive both high- and low-temperature series for the free energies. By plotting both the high- and low-temperature free energies it is possible, in principle, to distinguish between firstand second-order transitions. In the present case we find no strong evidence for a first-order transition, although we cannot completely exclude it.

In the following paper (Oitmaa et al 1987) we study the same model using a completely different approach, based on transfer matrix calculations for finite width strips and a finite-size scaling analysis.

2. The susceptibility series

The high-temperature series for the wavevector-dependent susceptibility was derived using the connected multigraph expansion (Oitmaa 1981). The susceptibility is expressed in the general form

$$
\begin{equation*}
\chi(\boldsymbol{q})=1+2 \sum_{\{G\}} W_{G} X_{G}\left(\boldsymbol{q},\left\{v_{\alpha}\right\}\right) \tag{2}
\end{equation*}
$$

where the sum is over the set of connected graphs with single and multiple edges which have exactly two vertices of odd degree. Through eleventh order there are 3296 such graphs, and the graph weights W_{G}, which are the same for any Ising problem, are available from previous work. The factor X_{G} is a sum over all embeddings of G on the lattice, in which, for each embedding, two factors are included:
(i) a contribution from each edge of $\tanh \beta J_{\alpha}$, where J_{α} is the particular interaction parameter, and
(ii) a factor $\exp (2 \pi \mathrm{i} \boldsymbol{q} \cdot \boldsymbol{R})$ where \boldsymbol{R} is the vector joining the two odd vertices.

In this way we obtain a two-variable series of the form

$$
\begin{equation*}
\chi(q)=1+\sum_{n=1}^{\infty} \sum_{s=0}^{n} C_{n s}(q) v^{n-s} w^{s} \tag{3}
\end{equation*}
$$

where $v=\tanh K, w=\tanh K^{\prime}$. The data are too extensive to publish but can be supplied on request. For $q=0$ the coefficients are given in table 1 .

The analysis proceeds in the usual way. For any chosen value of $\alpha=J^{\prime} / J$ we expand the hyperbolic tangent factors and obtain a series in the single variable $K=J / k T$. The resulting single variable series are then analysed by standard ratio and Padé approximant methods.

In the ferromagnetic region $\alpha>-0.5$ the $q=0$ susceptibility is expected to diverge at a critical point $K_{\mathrm{c}}(\alpha)$ with a power law

$$
\begin{equation*}
\chi \sim C\left(1-\frac{K}{K_{\mathrm{c}}}\right)^{-\gamma} \tag{4}
\end{equation*}
$$

with the exponent taking the universal value $\gamma=\frac{7}{4}$. For $\alpha>0$ (all interactions ferromagnetic) the position of the singularity can be estimated with an uncertainty of less than
Table 1. Coefficients of the high-temperature susceptibility (3) for $q=0$.

n	0	1	2	3	4	5	6	7	8	9	10	1
1	4	4										
2	12	32	12									
3	36	148	160	36								
4	100	592	1064	672	100							
5	276	2040	5520	5900	2528	276						
6	740	6672	23292	38352	28064	8864	740					
7	1972	20688	89520	194928	221920	120460	29536	1972				
8	5172 13492	62384	318048	873104	1334472	1132624	480088	94752	5172			
1	13492	182792	1078192	3530912	6896448	7927824	5271792	1808004	295008	13492		
10	34876	526256	3505912	13387856	31540608	46781392	42363708	22857424	6511600	896672		
11	89764	1488168	11079056	48078760	133136688	240314536	282662832	208469864	93666464	22617748	34876 2671904	89764

1% from ratios and from Padé approximants to the logarithmic derivative series. Padé approximants to $\chi^{4 / 7}$ yield four figure accuracy. In the region $-0.5<\alpha<0$ the analysis is complicated by the presence of competing singularities closer to the origin than the physical singularity, as shown in figure 3. In such situations it is often possible to improve the analysis by using transformations to move the physical singularity closer to the origin. An Euler transformation of the form

$$
K^{\prime \prime}=\frac{K}{1+a K}
$$

has the effect of moving the antiferromagnetic singularity on the negative real axis further away, and gives much improved consistency in the Padé approximants. We have also tried a variety of transformations which expand the imaginary axis and contract the real axis, in conjunction with Euler transformations, but no significant improvement is obtained. In table 2 we present some results of our analysis for the case $\alpha=-0.3$. As α approaches -0.5 and the critical coupling K_{c} approaches infinity, the analysis becomes increasingly difficult and cannot be carried beyond about -0.35 or -0.4 .

Figure 3. Singularities in the complex K plane for the ferromagnetic susceptibility. The full circle is the ferromagnetic critical point, which lies further and further outside the disc of convergence of the series as $\alpha \rightarrow-0.5$.

In the 'modulated' region $\alpha<-0.5$ it is necessary to carry out a systematic analysis of $\chi(\boldsymbol{q})$ series for the entire range of q values. (Throughout this paper, we restrict q to be in the diagonal direction, i.e. $q=q(1,1)$.) If there is a transition from the disordered phase to an incommensurate modulated phase then we would expect to find a critical wavenumber $q_{c}(\alpha)$ for which $\chi(\boldsymbol{q})$ shows a consistent singularity on the positive real axis. Such behaviour is seen in the two-dimensional annni model (Oitmaa 1985). Since in this case we are seeking the location of the lower transition line (see figure $2(b)$), which passes through the point ($0,-K_{0}$), it is more convenient to write $K=\beta K^{\prime}\left(\beta=\alpha^{-1}\right)$ and to obtain single variable series in $K^{\prime}=J^{\prime} / k T$. We then look for singularities on the negative real axis of the complex K^{\prime} plane. There will, in all cases, be interference from a closer singularity on the positive real axis, which corresponds to the upper branch in figure $2(b)$. An Euler transformation is used to expand the positive axis and contract the negative axis to bring the physical singularity closest to the origin.

For $\beta=0$ the series for $q=0.25$ is the nearest-neighbour Ising staggered susceptibility and shows a power law singularity of the form (4) with $K_{c}^{\prime}=--0.4407$ and $\gamma=1.75$. As β becomes negative the series for $q=0.25$ no longer show a consistent pole on the negative real axis but rather a complex conjugate pair. However it is possible to find

Table 2. Analysis of susceptibility series for the case $\alpha=-0.3$. (a) Coefficients of the series $\chi(K)$ and of the series $\chi\left(K^{\prime \prime}\right)$ with $K^{\prime \prime}=K /(1+2.5 K)$, (b) poles of Padé approximants to logarithmic derivative series, (c) poles of Padé approximants to $\chi^{4 / 7}$.

a wavenumber for which $\chi(\boldsymbol{q})$ does show a consistent singularity on the axis. In table 3 we present a summary of the analysis for $\beta=-1.0$, a wavenumber $q=0.22$ giving, in this case, the most consistent singularity. If this represents a transition to an incommensurate phase then there are arguments for expecting the asymptotic behaviour to be of the Kosterlitz-Thouless form $\exp \left[c\left(1-K / K_{\mathrm{c}}\right)^{-\nu}\right]$. Guttmann (1978) has suggested that, to distinguish between an essential singularity of this form and a conventional power law singularity of the form (4), one should look at the second logarithmic derivative. An algebraic singularity in the original series would give a simple pole with residue 1 whereas an essential singularity of the Kosterlitz-Thouless form would give a simple pole with residue $1+\gamma$. In the present case, for the $\beta=-1.0$ series, the residue is around 1.4-1.5, which is consistent with a Kosterlitz-Thouless transition, with $\gamma=\frac{1}{2}$.

The results of our analysis are summarised in figures 4 and 5 . On the ferromagnetic side the locus of the critical temperature agrees very well with the Monte Carlo (mC) results of Landau and Binder (1985). However, on the modulated side our critical line deviates significantly from the MC first-order transition temperature. Moreover

Table 3. Analysis of susceptibility series for $\beta=-1.0$ with wavenumber $q=0.22$. (a) Coefficients of series $\chi\left(K^{\prime}\right)$ and of the Euler transformed series $\chi\left(K^{\prime \prime}\right)$, with $K^{\prime \prime}=$ $K^{\prime} /\left(1-5 K^{\prime}\right)$, (b) position of pole on negative real axis and residue from Padé approximants to logarithmic derivative series, (c) position of pole on negative real axis and residue from Padé approximants to second logarithmic derivative series.

(c)	K^{\prime} series	$K^{\prime \prime}$ series
$[3,6]$	$-0.4684(0.566)$	$-0.1508(1.438)$
$[4,5]$	$-0.4475(0.458)$	$-0.1503(1.394)$
$[5,4]$	$-0.2313(0.006)$	$-0.1501(1.374)$
$[6,3]$	$-0.2734(0.022)$	$-0.1503(1.392)$
$[3,5]$	$-0.5089(0.751)$	$-0.1511(1.468)$
$[4,4]$	$-1.1198(9.561)$	$-0.1570(2.318)$
$[5,3]$	-	$-0.1511(1.460)$

our transition temperatures are higher than the mC values so that the discrepancy is not attributable to the series seeing a spinodal curve within the region of metastability. One possible explanation is that there are indeed two transitions and that the Monte Carlo work is picking up the lower one whereas the series are seeing the higher transition. This point is investigated further in the following section.

3. The free energy series

It is difficult, using series techniques, to unambiguously identify a first-order transition. The only practical approach is the technique of 'free energy matching', which uses

Figure 4. Variation of transition temperature with $\alpha=J^{\prime} / J$, as determined from hightemperature series. The crosses are Monte Carlo estimates from Landau and Binder (1985). The chain curve is the asymptote corresponding to $J \rightarrow 0, k T / J^{\prime}=-2.27$.

Figure 5. The singularities of $f\left(K, K^{\prime}\right)$ as determined from high-temperature series. The crosses are the Monte Carlo estimates for Landau and Binder (1985).
both high- and low-temperature expansions to evaluate the free energy as a function of temperature. If the two branches thus obtained meet smoothly, with no change in slope, then the transition is of second (or higher) order. If, however, there is a change in slope then the point of intersection is a first-order transition point. There are, of course, difficulties with this procedure since there is always numerical uncertainty in the values of the free energy thus obtained. However, the method has been successfully used in several recent studies (Velgakis and Ferer 1983, Styer 1985). We have therefore attempted to resolve the question of the nature of the transition to the modulated phase by this method.

A high-temperature expansion for the zero-field energy has been obtained by the same technique as used in the previous section for the susceptibility. The expansion
has been computed through twelfth order, to which order there are 508 graphs. The expansion has the form

$$
\begin{equation*}
-\beta f=\ln 2+2 \ln \cosh K+2 \ln \cosh K^{\prime}+\sum_{n=1}^{\infty} \sum_{s=0}^{n} a_{n s} v^{n-s} w^{s} \tag{5}
\end{equation*}
$$

where $v=\tanh K, w=\tanh K^{\prime}$ as before. The coefficients $\left\{a_{n s}\right\}$ are given in table 4. For any value of $\alpha=K^{\prime} / K$ we then obtain a series in the single variable $K=J / k T$. By computing Padé approximants to this series and evaluating these at a sequence of K values we obtain an estimate of the high-temperature 'branch' of the free energy.

Table 4. Coefficients of the high-temperature free energy expansion (5).

	s												
n	0	1	2	3	4	5	6	7	8	9	10	11	12
3	0	2	0	0									
4	1	0	4	0	1								
5	0	12	0	14	0	0							
6	2	0	73	0	36	0	2						
7	0	32	0	356	0	94	0	0					
8	$4 \frac{1}{2}$	0	316	0	1540	0	236	0	$4 \frac{1}{2}$				
9	0	92	0	$2450 \frac{2}{3}$	0	6180	0	618	0	0			
0	12	0	1178	0	15964	0	23353	0	1556	0	12		
11	0	316	0	11892	0	91236	0	84028	0	3978	0	0	
12	$37 \frac{1}{3}$	0	4988	0	$101333 \frac{1}{2}$	0	$472073 \frac{1}{8}$	0	291106	0	9956	0	$37 \frac{1}{3}$

A low-temperature expansion for the free energy, valid in the modulated region, has been obtained by starting from the ordered chessboard state and enumerating configurations with a small number of overturned spins. Rather than use the partial generating function method (Sykes et al 1965), which becomes very complicated in the present case because of the large number of sublattices, we have used a more primitive approach. The configurations have been enumerated by hand and a computer program written to evaluate the lattice embedding constants. The series is given by

$$
\begin{align*}
-\beta f=2\left|K^{\prime}\right|+ & v^{2}+2 v^{3}+\left(u+2 \frac{1}{2}+u^{-1}\right) v^{4}+6\left(u+u^{-1}\right) v^{5} \\
& +\left(2 u^{2}+22 u-10^{\frac{2}{3}}+22 u^{-1}+2 u^{-2}\right) v^{6} \\
& +\left(20 u^{2}+62 u-34+62 u^{-1}+20 u^{-2}\right) v^{7}+\ldots \tag{6}
\end{align*}
$$

where $v=\exp \left(-4\left|K^{\prime}\right|\right), u=\exp (-4 K)$. Pade approximants are then used to evaluate the low-temperature free energy.

Results are presented for the case $\alpha=-1$, which is typical. In table 5 we give numerical estimates for the high- and low-temperature free energies, obtained from the highest-order Padé approximants. These results are used as the basis of the plot shown in figure 6. As can be seen from this figure there is no apparent crossing of the two branches, and hence no indication of a first-order transition. At the positions of the transition obtained in the previous section ($K \approx 0.54$) and that obtained from the diagram of Landau and Binder ($K=0.71$) the high-temperature free energy lies clearly below the low-temperature curve. It may be that our error estimates for the hightemperature free energy for $K \geqslant 0.6$ are too optimistic. Indeed, if one were to disregard

Table 5. Estimates of $-\beta f$ from (a) high- and (b) low-temperature expansions.

(a)	K						
[$N, D]$	0.45	0.50	0.55	0.60	0.65	0.70	0.75
[5,7]	1.007	1.075	1.150	1.232	1.321	1.417	1.519
$[6,6]$	1.007	1.076	1.151	1.234	1.326	1.426	1.536
[7, 5]	1.006	1.074	1.148	1.229	1.316	1.409	1.509
$[5,6]$	1.008	1.078	1.155	1.242	1.334	1.447	1.570
$[6,5]$	1.007	1.075	1.149	1.230	1.318	1.413	1.515
$[4,6]$	1.007	1.076	1.151	1.234	1.326	1.426	1.536
$[5,5]$	1.006	1.074	1.148	1.229	1.316	1.409	1.509
$[6,4]$ Estimate	1.007	1.076	1.151	1.234	1.326	1.426	1.535
	1.007	1.076	1.151	1.234	1.325	1.425	1.53
	± 0.001	± 0.002	± 0.003	± 0.004	± 0.01	± 0.015	± 0.02
(b)	K						
[$N, D]$	0.45	0.50	0.55	0.60	0.65	0.70	0.75
$[2,5]$	0.994	1.036	1.120	1.2117	1.3072	1.4046	1.5029
$[3,4]$	1.011	1.037	1.120	1.2117	1.3072	1.4046	1.5029
$[4,3]$	1.004	1.037	1.120	1.2117	1.3072	1.4046	1.5029
$[5,2]$	0.988	1.036	1.120	1.2117	1.3072	1.4046	1.5029
$[2,4]$	0.949	1.032	1.119	1.2116	1.3072	1.4046	1.5029
$[3,3]$	0.897	1.066	1.122	1.2122	1.3074	1.4046	1.5029
[4, 2]	0.960	1.033	1.119	1.2116	1.3072	1.4046	1.5029
Estimate	0.99	1.037	1.120	1.2117	1.3072	1.4046	1.5209
	± 0.03	± 0.003	± 0.0005				

Figure 6. High- and low-temperature free energies for the case $\alpha=-1$. The arrows show the transition points obtained in this paper (OV) and by Landau and Binder (LB).
these points and extrapolate the high T curve from the clearly convergent values for $K \leqslant 0.5$, then it is conceivable that an intersection of the two curves, with a change in slope, might occur around the Landau-Binder esimate. However, it is also the case that if there exists an intermediate phase then one would not expect the high- and low-temperature series to converge to a single point of intersection and one might see the type of behaviour evident in figure 6.

4. Conclusions

The model we have studied in this paper is a very simple one, and yet has sufficiently subtle and rich behaviour as to remain only partially understood. In the regime where the third-neighbour interactions are ferromagnetic or weakly antiferromagnetic, the picture is clear and our results corroborate previous ones. When the third-neighbour interactions are sufficiently strongly antiferromagnetic, so that the ground state is the chessboard or staircase structure, our results are rather inconclusive. The series do show a transition, with some indication that it may be of Kosterlitz-Thouless form, at a temperature above the transition shown by the recent Monte Carlo work. This, and the fact that the free energy matching procedure shows no sign of a first-order transition, may be taken as favouring the picture of two separate transitions. However, the evidence is not clear cut and further studies of this model are clearly warranted.

Acknowledgment

This work forms part of a project which is supported by the Australian Research Grants Scheme (ARGS).

References

Guttmann A J 1978 J. Phys. A: Math. Gen. 11 545-53
Hornreich R M, Liebmann R, Schuster H G and Selke W 1979 Z. Phys. B 35 91-7
Landau D P and Binder K 1985 Phys. Rev. B 31 5946-53
Oitmaa J 1981 Can. J. Phys. 59 15-21
-_ 1985 J. Phys. A: Math. Gen. 18 365-75
Oitmaa J, Batchelor M T and Barber M N 1987 J. Phys. A: Math. Gen. 20 1507-19
Selke W 1984 Modulated Structure Materials ed T Tsakalakos (Dordrecht: Martinus Nijhoff) pp 23-42
Selke W and Fisher M E 1980 Z. Phys. B $4071-7$
Styer D F 1985 Phys. Rev. B 32 393-9
Sykes M F, Essam J W and Gaunt D S 1965 J. Math. Phys. 6 283-98
Velgakis M J and Ferer M 1983 Phys. Rev. B 27 401-12

