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Critical behaviour of the two-dimensional biaxial 
next-nearest-neighbour Ising model: series expansions 

J Oitmaa and M J Velgakis 
School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia 

Received 28 July 1986 

Abstract. The critical behaviour of an k ing  model with competing first- and third-nearest- 
neighbour interactions (‘biaxial next-nearest-neighbour Ising’ or B N N N I  model) on the 
square lattice is investigated by high- and low-temperature series. 

1. Introduction 

The study of Ising systems with further-neighbour interactions, particularly competing 
interactions, continues to be an active area of research (e.g. Selke 1984 and references 
therein). The full understanding of the occurrence and nature of spatially modulated 
phases, both commensurate and incommensurate with the lattice, in such simple models 
is a necessary first step to the understanding of such phenomena in real systems. 

One model which has been extensively studied is the axial next-nearest-neighbour 
Ising (or ANNNI)  model. This model does exhibit both commensurate and incom- 
mensurate modulated phases and an extremely rich phase diagram. In three dimensions 
the model has a finite-temperature Lifshitz point. 

A related model, which has received far less attention, has competing nearest- and 
next-nearest-neighbour interactions along two of the lattice directions. We choose to 
call this the biaxial next-nearest-neighbour Ising model or B N N N I  model. In two 
dimensions this is, of course, an isotropic version of the ANNNI model and there have 
been some previous studies of this case. The three-dimensional version, consisting of 
ferromagnetically coupled planes, is expected to exhibit a ‘biaxial Lifshitz point’ and 
is of interest for this reason. However in the present paper we concentrate on the 
two-dimensional case, leaving the three-dimensional version for future work. 

The Hamiltonian of the model, which is illustrated in figure l(a),  is given by 

where the first sum is over nearest-neighbour pairs and the second sum is over 
next-nearest-neighbour pairs in the axial directions (actually third neighbours). In this 
paper we consider only the zero-field case. Because the free energy is an even function 
of J we may, without loss of generality, take this interaction to be ferromagnetic ( J  > 0). 

For J ’ >  -fJ the ground state is ferromagnetic and the transition from the ordered 
phase to the disordered phase is expected to be of the universal 2~ Ising type. At the 
point J ‘ =  - i J  the ground state is infinitely degenerate, with a non-zero entropy, and 
consequently the critical temperature will drop to zero at this point. For J ’ <  --;.I the 
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antiferromagnetic interactions are sufficiently strong to stabilise two types of ground 
state, the ‘chessboard’ and ‘staircase’ configurations, shown in figure l ( b ) .  Both of 
these structures can be regarded as commensurate modulated structures with wavevec- 
tor in the diagonal direction q = ($, $). These two states have the same energy but it 
can be argued that at low but non-zero temperature a ‘chessboard-like’ structure will 
be favoured because of higher entropy and hence lower free energy (Selke and Fisher 
1980). The nature of the transition, or sequence of transitions, from this ordered phase 
to the high-temperature disordered phase is uncertain. Early Monte Carlo work 
(Homreich er a1 1979, Selke and Fisher 1980) indicated a transition from the com- 
mensurate phase to an incommensurate phase followed by a second transition to the 
disordered phase, this transition presumably being of Kosterlitz-Thouless type. 
However, more recent Monte Carlo studies by Landau and Binder (1985) show a single 
first-order transition directly from the commensurate ordered phase to the disordered 
phase, without the presence of an intermediate phase. The two possible forms of the 
phase diagram are shown in figure 2(a) .  

An alternative way of exhibiting the phase diagram of the model is via the lines 
of singularities of the free energy per spin f ( K ,  K‘) where K = J / k T  and K’= J’ lkT.  
Since for K ’ = 0, or for K = 0, the model reduces to the nearest-neighbour square 
lattice problem there will be singularities of the Onsager type at the four symmetrically 
located points (*KO, 0), (0, *KO) with KO = 0.440 68.  . ., as shown in figure 2 ( b ) .  There 
will be a pair of critical lines passing through these points and asymptotically approach- 
ing the lines K’= * t K .  There will be a branch, or possibly two branches, in the lower 
half-plane, as shown. 

kT transition 
Sinusoidal - (cl1 

phase Chessboard 5 1 n . t 

Chessboor&, 

( b l  f K ’  

Figure 2. (a)  The expected variation of transition temperature with a = J ’ / I ,  showing the 
two possible pictures for a < -0.5. ( b )  The lines of singularities of the free energyf( K, K’). 
The lower branch may be a single line of first-order transitions or two second-order lines. 
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In the present paper we investigate the properties of this system by the technique 
of exact series expansions. We first derive and analyse high-temperature series for the 
wavevector-dependent susceptibility x( q ) .  This leads to an accurate determination of 
the critical temperature over most of the ferromagnetic region. Over most of the 
modulated region, K ' C  -$K,  we are able to locate a consistent singularity in a x(q)  
with non-zero wavenumber and there is some evidence that the singularity is of the 
Kosterlitz-Thouless form. This then tends to support the picture of two transitions 
rather than a single first-order transition. To test this question further we derive both 
high- and low-temperature series for the free energies. By plotting both the high- and 
low-temperature free energies it is possible, in principle, to distinguish between first- 
and second-order transitions. In the present case we find no strong evidence for a 
first-order transition, although we cannot completely exclude it. 

In the following paper (Oitmaa et a1 1987) we study the same model using a 
completely different approach, based on transfer matrix calculations for finite width 
strips and a finite-size scaling analysis. 

2. The susceptibility series 

The high-temperature series for the wavevector-dependent susceptibility was derived 
using the connected multigraph expansion (Oitmaa 1981). The susceptibility is 
expressed in the general form 

x ( q ) = 1 + 2  w&G(q,{ua)) (2) 
( G )  

where the sum is over the set of connected graphs with single and multiple edges which 
have exactly two vertices of odd degree. Through eleventh order there are 3296 such 
graphs, and the graph weights W,, which are the same for any Ising problem, are 
available from previous work. The factor XG is a sum over all embeddings of G on 
the lattice, in which, for each embedding, two factors are included: 

(i) a contribution from each edge of tanh p J a ,  where J, is the particular interaction 
parameter, and 

(ii) a factor e x p ( 2 ~ i q  - R) where R is the vector joining the two odd vertices. 
In this way we obtain a two-variable series of the form 

where U = tanh K,  w = tanh K'. The data are too extensive to publish but can be 
supplied on request. For q = 0 the coefficients are given in table 1. 

The analysis proceeds in the usual way. For any chosen value of a = J ' / J  we 
expand the hyperbolic tangent factors and obtain a series in the single variable 
K = J /  kT. The resulting single variable series are then analysed by standard ratio and 
Pad6 approximant methods. 

In the ferromagnetic region a > -0.5 the q = 0 susceptibility is expected to diverge 
at a critical point K,(cu) with a power law 

- c ( 1 -e) - y  (4) 

with the exponent taking the universal value y = $. For a > 0 (all interactions ferromag- 
netic) the position of the singularity can be estimated with an uncertainty of less than 
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1% from ratios and from Pad6 approximants to the logarithmic derivative series. Pad6 
approximants to x4" yield four figure accuracy. In the region -0.5 < a < 0 the analysis 
is complicated by the presence of competing singularities closer to the origin than the 
physical singularity, as shown in figure 3. In such situations it is often possible to 
improve the analysis by using transformations to move the physical singularity closer 
to the origin. An Euler transformation of the form 

has the effect of moving the antiferromagnetic singularity on the negative real axis 
further away, and gives much improved consistency in the Pad6 approximants. We 
have also tried a variety of transformations which expand the imaginary axis and 
contract the real axis, in conjunction with Euler transformations, but no significant 
improvement is obtained. In table 2 we present some results of our analysis for the 
case a = -0.3. As a approaches -0.5 and the critical coupling K ,  approaches infinity, 
the analysis becomes increasingly difficult and cannot be carried beyond about -0.35 
or -0.4. 

l o  t 
b 

I 

a= -0 .1  a=-0 .2  a = - 0 . 3  

Figure 3. Singularities in the complex K plane for the ferromagnetic susceptibility. The 
full circle is the ferromagnetic critical point, which lies further and further outside the disc 
of convergence of the series as a + -0.5. 

In the 'modulated' region a -= -0.5 it is necessary to carry out a systematic analysis 
of x ( q )  series for the entire range of q values. (Throughout this paper, we restrict q 
to be in the diagonal direction, i.e. q = q(1, l).) If there is a transition from the 
disordered phase to an incommensurate modulated phase then we would expect to 
find a critical wavenumber qc(a) for which x ( q )  shows a consistent singularity on the 
positive real axis. Such behaviour is seen in the two-dimensional ANNNI model (Oitmaa 
1985). Since in this case we are seeking the location of the lower transition line (see 
figure 2(6)) ,  which passes through the point (0, -KO), it is more convenient to write 
K = PK' ( P  = a-') and to obtain single variable series in K ' =  J ' /kT .  We then look 
for singularities on the negative real axis of the complex K '  plane. There will, in all 
cases, be interference from a closer singularity on the positive real axis, which corre- 
sponds to the upper branch in figure 2( 6) .  An Euler transformation is used to expand 
the positive axis and contract the negative axis to bring the physical singularity closest 
to the origin. 

For P = 0 the series for q = 0.25 is the nearest-neighbour Ising staggered susceptibil- 
ity and shows a power law singularity of the form (4) with KA = --0.4407 and y = 1.75. 
As p becomes negative the series for q = 0.25 no longer show a consistent pole on the 
negative real axis but rather a complex conjugate pair. However it is possible to find 
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Table 2. Analysis of susceptibility series for the case a = -0.3. ( a )  Coefficients of the 
series ,y(K) and of the series ,y(K”) with K“=K/ (1+2 .5  K) ,  (b)  poles of Pad6 
approximants to logarithmic derivative series, (c) poles of Pad6 approximants to x4”. 

K series K ”  series 

1 .o 
2.8 
3.48 
3.730 666 667. . . 

-3.750 8 
11.193 637 33 . .  . 

-3.762 563 2 
55.106 632 78 . .  . 

-131.045 013 6 . .  . 
264.175 356 0 . .  . 

-716.964 097 5 . .  . 
2187.751 839..  . 

1 .o 
2.8 

10.48 
38.630 666 67. . . 

133.229 2 
440,460 637 3 . . . 

1 437.714 570..  . 
4 784.540 435 . . . 

16 639.989 43 . . . 
60 857.360 21 . . . 

230 808.285 3 .  . . 
887 100.474 7 .  . . 

( b )  K series K”  series 

[4,61 -0.3205, 

15.51 1.5998, -0.3206, 

[6,4l -0.3205, 

~ 4 ~ 5 1  1.3549, -0.3204, 

~ 5 ~ 4 1  0.9930, -0.3203, 

0.0291 f 0.5761i 

0.03O4f 0.57811 

0.0277 f 0.5745i 

0.0354* 0.5748i 

0.0421 f 0.57531 

0.2669+0.17861 
0.2422 f 0.0429i 
0.2554f 0.19851 
0.2849 f 0.0483i 
0.2616 f 0.18521 
0.2424 
0.2461 * 0.20861 
0.2473 
0.2408 f 0.2080i 

~~~~ ~ ~~ 

K series 1.0645 1.0453 1.0801 - 1.0262 1.0133 - 
K” series 0.2889 0.2916 0.2864 0.2898 0.2871 0.2868 0.2868 
Estimate K: = 0.288 f 0.002 gives K, = 1.03 f 0.03 

a wavenumber for which x ( q )  does show a consistent singularity on the axis. In table 
3 we present a summary of the analysis for p = -1.0, a wavenumber q = 0.22 giving, 
in this case, the most consistent singularity. If this represents a transition to an 
incommensurate phase then there are arguments for expecting the asymptotic behaviour 
to be of the Kosterlitz-Thouless form exp[c(l- K / K , ) 7 .  Guttmann (1978) has 
suggested that, to distinguish between an essential singularity of this form and a 
conventional power law singularity of the form (4), one should look at the second 
logarithmic derivative. An algebraic singularity in the original series would give a 
simple pole with residue 1 whereas an essential singularity of the Kosterlitz-Thouless 
form would give a simple pole with residue 1 + y. In the present case, for the p = - 1 .O 
series, the residue is around 1.4- 1.5, which is consistent with a Kosterlitz-Thouless 
transition, with y = f. 

The results of our analysis are summarised in figures 4 and 5. On the ferromagnetic 
side the locus of the critical temperature agrees very well with the Monte Carlo (MC) 

results of Landau and Binder (1985). However, on the modulated side our critical 
line deviates significantly from the MC first-order transition temperature. Moreover 
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Table 3. Analysis of susceptibility series for p = -1.0 with wavenumber 9 = 0.22. ( a )  
Coefficients of series , y ( K ' )  and of the Euler transformed series , y ( K " ) ,  with K " =  
K ' / (  1 - 5 K'), (b)  position of pole on negative real axis and residue from Pade approximants 
to logarithmic derivative series, ( c )  position of pole on negative real axis and residue from 
Pade approximants to second logarithmic derivative series. 

( a )  K '  series K ' I  series 

1 .o 
-4.468 631 201 9 0 . .  . 
11.968 664 818 6 . .  . 

-32.713 586 906 0.. . 
56.268 674 673 6 . . . 

-2.186 304 493 91 . . . 
-225.185 749 117..  . 

-2 375.518 431 6 2 . .  . 
-6 914.354 079 35. . . 

-44681.717 671 7 . .  . 
-201 308.393 489.. . 

-1042 828.304 51..  . 

1 .o 
-4.468 631 201 90 . .  . 
34.311 820828 0.. . 

-264.116015 139..  . 
2 003.201 239 89 . .  . 

-15 034.824 189 0.. . 
111 953.159788.. . 

-828 350.977 021 . . , 
6 096 159.559 92 . .  . 

-44 652 729.763 1 . . . 
325 688 842.249. , . 

-2366 449 154.69. . . 

( b )  K'  series K" series 

-0.5463 (2.025) -0.1464 (2.025) 
-0.5463 (2.025) -0.1464 (2.025) 
-0.4405 (0.459) -0.1464 (2.024) 
-0.5475 (2.046) -0.1466 (2.066) 
-0.6096 (3.474) -0.1466 (2.081) 
-0.6660 (5.832) -0.1449 (1.766) 

K :  = -0.146 * 0.001 
K : =  -0.541 *0.014 

K '  series K I' series 

[3,61 -0.4684 (0.566) -0.1508 (1.438) 
14~51 -0.4475 (0.458) -0.1503 ( 1.394) 
~ 5 ~ 4 1  -0.2313 (0.006) -0.1501 (1.374) 
~ 3 1  -0.2734 (0.022) -0.1503 (1.392) 
[3,51 -0.5089 (0.751) -0.1511 (1.468) 
~ 4 ~ 4 1  -1.1198 (9.561) -0.1570 (2.318) 

-0.1511 (1.460) r5,31 - 

our transition temperatures are higher than the MC values so that the discrepancy is 
not attributable to the series seeing a spinodal curve within the region of metastability. 
One possible explanation is that there are indeed two transitions and that the Monte 
Carlo work is picking up the lower one whereas the series are seeing the higher 
transition. This point is investigated further in the following section. 

3. The free energy series 

It is difficult, using series techniques, to unambiguously identify a first-order transition. 
The only practical approach is the technique of 'free energy matching', which uses 
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J ' l  J 

Figure 4. Variation of transition temperature with a = J ' / J ,  as determined from high- 
temperature series. The crosses are Monte Carlo estimates from Landau and Binder (1985). 
The chain curve is the asymptote corresponding to J + 0, k T /  J'  = -2.27. 

. c '. 

Figure 5. The singularities of f ( K ,  K') as determined from high-temperature series. The 
crosses are the Monte Carlo estimates for Landau and Binder (1985). 

both high- and low-temperature expansions to evaluate the free energy as a function 
of temperature. If the two branches thus obtained meet smoothly, with no change in 
slope, then the transition is of second (or higher) order. If, however, there is a change 
in slope then the point of intersection is a first-order transition point. There are, of 
course, difficulties with this procedure since there is always numerical uncertainty in 
the values of the free energy thus obtained. However, the method has been successfully 
used in several recent studies (Velgakis and Ferer 1983, Styer 1985). We have therefore 
attempted to resolve the question of the nature of the transition to the modulated 
phase by this method. 

A high-temperature expansion for the zero-field energy has been obtained by the 
same technique as used in the previous section for the susceptibility. The expansion 
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has been computed through twelfth order, to which order there are 508 graphs. The 
expansion has the form 

c o n  

-Pf=ln2+21ncosh K+2lncosh  K '+  an,un-swS ( 5 )  
n = l  s=O 

where U = tanh K ,  w = tanh K '  as before. The coefficients {ans}  are given in table 4. 
For any value of a = K'/K we then obtain a series in the single variable K = J / k T .  
By computing Pad6 approximants to this series and evaluating these at a sequence of 
K values we obtain an estimate of the high-temperature 'branch' of the free energy. 

Table 4. Coefficients of the high-temperature free energy expansion (5). 

n 0 1 2  3 4 5 6 7 8 9 10 11 12 

3 0 2 0  0 
4 1 0 4  0 1 
5 0 12 0 14 0 0 
6 2 0 73 0 36 0 2 
7 0 32 0 356 0 94 0 0 

9 0 92 0 245@ 0 6180 
0 12 0 1178 0 15964 0 23353 0 1556 0 12 

8 44 0 316 0 1540 0 236 0 44 
0 618 0 0  

11 0 316 0 11892 0 91236 0 84028 0 3978 0 0 
12 37; 0 4988 0 101 3334 0 4720738 0 291 106 0 9956 0 37; 

A low-temperature expansion for the free energy, valid in the modulated region, 
has been obtained by starting from the ordered chessboard state and enumerating 
configurations with a small number of overturned spins. Rather than use the partial 
generating function method (Sykes et a1 1965), which becomes very complicated in 
the present case because of the large number of sublattices, we have used a more 
primitive approach. The configurations have been enumerated by hand and a computer 
program written to evaluate the lattice embedding constants. The series is given by 

-Pf=21K'I + u2+2u3+ ( U  +2;+ u - ' ) u ~ + ~ ( u  + u-')u' 

+(2u2+22u -10$+22u-'+2U-2)u6 

+(20u2+62u - 3 4 + 6 2 ~ - ' + 2 0 ~ - ~ ) ~ ' + .  . . (6) 
where U = exp(-4IK'I), U = exp(-4K). Pad6 approximants are then used to evaluate 
the low-temperature free energy. 

Results are presented for the case a = -1, which is typical. In table 5 we give 
numerical estimates for the high- and low-temperature free energies, obtained from 
the highest-order Pad6 approximants. These results are used as the basis of the plot 
shown in figure 6. As can be seen from this figure there is no apparent crossing of the 
two branches, and hence no indication of a first-order transition. At the positions of 
the transition obtained in the previous section ( K  = 0.54) and that obtained from the 
diagram of Landau and Binder ( K  = 0.71) the high-temperature free energy lies clearly 
below the low-temperature curve. It may be that our error estimates for the high- 
temperature free energy for K 3 0.6 are too optimistic. Indeed, if one were to disregard 
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Table 5. Estimates of -Bf from ( a )  high- and (b)  low-temperature expansions. 

(0) K 

IN, Dl 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

[5,71 1.007 1.075 1.150 1.232 1.321 1.417 1.519 
[6,61 1.007 1.076 1.151 1.234 1.326 1.426 1.536 
[7,51 1.006 1.074 1.148 1.229 1.316 1.409 1.509 
[5,61 1.008 1.078 1.155 1.242 1.334 1.447 1.570 
1 6 5 1  1.007 1.075 1.149 1.230 1.318 1.413 1.515 
[4,61 1.007 1.076 1.151 1.234 1.326 1.426 1.536 
[5,51 1.006 1.074 1.148 1.229 1.316 1.409 1.509 
~ 4 1  1.007 1.076 1.151 1.234 1.326 1.426 1.535 
Estimate 1.007 1.076 1.151 1.234 1.325 1.425 1.53 

*0.001 i0.002 *0.003 io.004 io.01 k0.015 *0.02 

( b )  K 

t N, Dl 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

[2,51 0.994 1.036 
~ 3 ~ 4 1  1.011 1.037 
~ 4 ~ 3 1  1.004 1.037 
[5,21 0.988 1.036 
~ 4 1  0.949 1.032 
[3,31 0.897 1.066 
[4,21 0.960 1.033 
Estimate 0.99 1.037 

*0.03 i0.003 

1.120 
1.120 
1.120 
1.120 
1.119 
1.122 
1.119 
1.120 

*0.0005 

1.2117 
1.2117 
1.2117 
1.2117 
1.2116 
1.2122 
1.2116 
1.2117 

1.3072 
1.3072 
1.3072 
1.3072 
1.3072 
1.3074 
1.3072 
1.3072 

1.4046 
1.4046 
1.4046 
1.4046 
1.4046 
1.4046 
1.4046 
1.4046 

1.5029 
1 SO29 
1.5029 
1.5029 
1.5029 
1.5029 
1.5029 
1.5209 

i 
U 1 I I I 

0.5 0.6 0.7 
K 

Figure 6. High- and low-temperature free energies for the case a = -1. The arrows 
the transition points obtained in this paper (ov) and by Landau and Binder (LB). 

show 
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these points and extrapolate the high T curve from the clearly convergent values for 
K d 0.5, then it is conceivable that an intersection of the two curves, with a change in 
slope, might occur around the Landau-Binder esimate. However, it is also the case 
that if there exists an intermediate phase then one would not expect the high- and 
low-temperature series to converge to a single point of intersection and one might see 
the type of behaviour evident in figure 6. 

4. Conclusions 

The model we have studied in this paper is a very simple one, and yet has sufficiently 
subtle and rich behaviour as to remain only partially understood. In the regime where 
the third-neighbour interactions are ferromagnetic or weakly antiferromagnetic, the 
picture is clear and our results corroborate previous ones. When the third-neighbour 
interactions are sufficiently strongly antiferromagnetic, so that the ground state is the 
chessboard or staircase structure, our results are rather inconclusive. The series do 
show a transition, with some indication that it may be of Kosterlitz-Thouless form, at 
a temperature above the transition shown by the recent Monte Carlo work. This, and 
the fact that the free energy matching procedure shows no sign of a first-order transition, 
may be taken as favouring the picture of two separate transitions. However, the 
evidence is not clear cut and further studies of this model are clearly warranted. 
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