

Home Search Collections Journals About Contact us My IOPscience

Critical behaviour of the two-dimensional biaxial next-nearest-neighbour Ising model: series expansions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1987 J. Phys. A: Math. Gen. 20 1495 (http://iopscience.iop.org/0305-4470/20/6/032) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 16:31

Please note that terms and conditions apply.

# Critical behaviour of the two-dimensional biaxial next-nearest-neighbour Ising model: series expansions

J Oitmaa and M J Velgakis

School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia

Received 28 July 1986

Abstract. The critical behaviour of an Ising model with competing first- and third-nearestneighbour interactions ('biaxial next-nearest-neighbour Ising' or BNNNI model) on the square lattice is investigated by high- and low-temperature series.

#### 1. Introduction

The study of Ising systems with further-neighbour interactions, particularly competing interactions, continues to be an active area of research (e.g. Selke 1984 and references therein). The full understanding of the occurrence and nature of spatially modulated phases, both commensurate and incommensurate with the lattice, in such simple models is a necessary first step to the understanding of such phenomena in real systems.

One model which has been extensively studied is the axial next-nearest-neighbour Ising (or ANNNI) model. This model does exhibit both commensurate and incommensurate modulated phases and an extremely rich phase diagram. In three dimensions the model has a finite-temperature Lifshitz point.

A related model, which has received far less attention, has competing nearest- and next-nearest-neighbour interactions along two of the lattice directions. We choose to call this the biaxial next-nearest-neighbour Ising model or BNNNI model. In two dimensions this is, of course, an isotropic version of the ANNNI model and there have been some previous studies of this case. The three-dimensional version, consisting of ferromagnetically coupled planes, is expected to exhibit a 'biaxial Lifshitz point' and is of interest for this reason. However in the present paper we concentrate on the two-dimensional case, leaving the three-dimensional version for future work.

The Hamiltonian of the model, which is illustrated in figure 1(a), is given by

$$\mathcal{H} = -J \sum_{\langle ij \rangle} s_i s_j - J' \sum_{[ij]} s_i s_j$$
(1)

where the first sum is over nearest-neighbour pairs and the second sum is over next-nearest-neighbour pairs in the axial directions (actually third neighbours). In this paper we consider only the zero-field case. Because the free energy is an even function of J we may, without loss of generality, take this interaction to be ferromagnetic (J > 0).

For  $J' > -\frac{1}{2}J$  the ground state is ferromagnetic and the transition from the ordered phase to the disordered phase is expected to be of the universal 2D Ising type. At the point  $J' = -\frac{1}{2}J$  the ground state is infinitely degenerate, with a non-zero entropy, and consequently the critical temperature will drop to zero at this point. For  $J' < -\frac{1}{2}J$  the antiferromagnetic interactions are sufficiently strong to stabilise two types of ground state, the 'chessboard' and 'staircase' configurations, shown in figure 1(b). Both of these structures can be regarded as commensurate modulated structures with wavevector in the diagonal direction  $q = (\frac{1}{4}, \frac{1}{4})$ . These two states have the same energy but it can be argued that at low but non-zero temperature a 'chessboard-like' structure will be favoured because of higher entropy and hence lower free energy (Selke and Fisher 1980). The nature of the transition, or sequence of transitions, from this ordered phase to the high-temperature disordered phase is uncertain. Early Monte Carlo work (Hornreich *et al* 1979, Selke and Fisher 1980) indicated a transition from the commensurate phase to an incommensurate phase followed by a second transition to the disordered phase, this transition presumably being of Kosterlitz-Thouless type. However, more recent Monte Carlo studies by Landau and Binder (1985) show a single first-order transition directly from the commensurate ordered phase to the disordered phase, without the presence of an intermediate phase. The two possible forms of the phase diagram are shown in figure 2(a).

An alternative way of exhibiting the phase diagram of the model is via the lines of singularities of the free energy per spin f(K, K') where K = J/kT and K' = J'/kT. Since for K' = 0, or for K = 0, the model reduces to the nearest-neighbour square lattice problem there will be singularities of the Onsager type at the four symmetrically located points  $(\pm K_0, 0), (0, \pm K_0)$  with  $K_0 = 0.440.68...$ , as shown in figure 2(b). There will be a pair of critical lines passing through these points and asymptotically approaching the lines  $K' = \pm \frac{1}{2}K$ . There will be a branch, or possibly two branches, in the lower half-plane, as shown.



Figure 1. (a) The interactions of the two-dimensional BNNNI model. (b) The two types of ground state for  $J' < -\frac{1}{2}J$ .



**Figure 2.** (a) The expected variation of transition temperature with  $\alpha = J'/J$ , showing the two possible pictures for  $\alpha < -0.5$ . (b) The lines of singularities of the free energy f(K, K'). The lower branch may be a single line of first-order transitions or two second-order lines.

In the present paper we investigate the properties of this system by the technique of exact series expansions. We first derive and analyse high-temperature series for the wavevector-dependent susceptibility  $\chi(q)$ . This leads to an accurate determination of the critical temperature over most of the ferromagnetic region. Over most of the modulated region,  $K' < -\frac{1}{2}K$ , we are able to locate a consistent singularity in a  $\chi(q)$ with non-zero wavenumber and there is some evidence that the singularity is of the Kosterlitz-Thouless form. This then tends to support the picture of two transitions rather than a single first-order transition. To test this question further we derive both high- and low-temperature series for the free energies. By plotting both the high- and low-temperature free energies it is possible, in principle, to distinguish between firstand second-order transitions. In the present case we find no strong evidence for a first-order transition, although we cannot completely exclude it.

In the following paper (Oitmaa *et al* 1987) we study the same model using a completely different approach, based on transfer matrix calculations for finite width strips and a finite-size scaling analysis.

#### 2. The susceptibility series

The high-temperature series for the wavevector-dependent susceptibility was derived using the connected multigraph expansion (Oitmaa 1981). The susceptibility is expressed in the general form

$$\chi(\boldsymbol{q}) = 1 + 2 \sum_{\{G\}} W_G X_G(\boldsymbol{q}, \{\boldsymbol{v}_\alpha\})$$
<sup>(2)</sup>

where the sum is over the set of connected graphs with single and multiple edges which have exactly two vertices of odd degree. Through eleventh order there are 3296 such graphs, and the graph weights  $W_G$ , which are the same for any Ising problem, are available from previous work. The factor  $X_G$  is a sum over all embeddings of G on the lattice, in which, for each embedding, two factors are included:

(i) a contribution from each edge of  $\tanh \beta J_{\alpha}$ , where  $J_{\alpha}$  is the particular interaction parameter, and

(ii) a factor  $\exp(2\pi i \boldsymbol{q} \cdot \boldsymbol{R})$  where  $\boldsymbol{R}$  is the vector joining the two odd vertices.

In this way we obtain a two-variable series of the form

$$\chi(q) = 1 + \sum_{n=1}^{\infty} \sum_{s=0}^{n} C_{ns}(q) v^{n-s} w^{s}$$
(3)

where  $v = \tanh K$ ,  $w = \tanh K'$ . The data are too extensive to publish but can be supplied on request. For q = 0 the coefficients are given in table 1.

The analysis proceeds in the usual way. For any chosen value of  $\alpha = J'/J$  we expand the hyperbolic tangent factors and obtain a series in the single variable K = J/kT. The resulting single variable series are then analysed by standard ratio and Padé approximant methods.

In the ferromagnetic region  $\alpha > -0.5$  the q = 0 susceptibility is expected to diverge at a critical point  $K_c(\alpha)$  with a power law

$$\chi \sim C \left( 1 - \frac{K}{K_{\rm c}} \right)^{-\gamma} \tag{4}$$

with the exponent taking the universal value  $\gamma = \frac{7}{4}$ . For  $\alpha > 0$  (all interactions ferromagnetic) the position of the singularity can be estimated with an uncertainty of less than

|   | 11 |   |    |     |       |       |        |         |           |           |                           | 89 764            |  |
|---|----|---|----|-----|-------|-------|--------|---------|-----------|-----------|---------------------------|-------------------|--|
|   | 10 |   |    |     |       |       |        |         |           |           |                           | 34 876<br>671 904 |  |
|   | 6  |   |    |     |       |       |        |         |           |           | 15 492                    | <b>617 748 2</b>  |  |
|   | ∞  |   |    |     |       |       |        |         | CE1 3     | 2/1 C     | 000 C67                   | 5066 464 22       |  |
|   | 7  |   |    |     |       |       |        | 1 073   | 2121      | 701 608 1 | 1 000 004<br>77 857 474 5 | 08 469 864 93     |  |
|   | 6  |   |    |     |       |       | 740    | 79 536  | 480.088   | 5 271 702 | 271172<br>47363708        | 82 662 832 2      |  |
| S | s  |   |    |     |       | 276   | 8 864  | 120 460 | 1 132 624 | 7 977 824 | 6 781 392                 | 0314536 28        |  |
|   | 4  |   |    |     | 001   | 2 528 | 28 064 | 221 920 | 1 334 472 | 6 896 448 | 31 540 608 4              | 3 136 688 24      |  |
|   | 3  | 1 |    | 36  | 672   | 5 900 | 38 352 | 194 928 | 873 104   | 3 530 912 | 13 387 856                | 18 078 760 13     |  |
|   | 2  |   | 12 | 160 | 1 064 | 5 520 | 23 292 | 89 520  | 318 048   | 1 078 192 | 3 505 912                 | 11 079 056        |  |
|   | -  | 4 | 32 | 148 | 592   | 2 040 | 6 672  | 20 688  | 62 384    | 182 792   | 526 256                   | 1488 168          |  |
|   | 0  | 4 | 12 | 36  | 100   | 276   | 740    | 1 972   | 5 172     | 13 492    | 34 876                    | 89 764            |  |
|   | E  | 1 | 2  | 3   | 4     | 5     | 6      | 1       | ×         | 6         | 10                        | =                 |  |

**Table 1.** Coefficients of the high-temperature susceptibility (3) for q = 0.

1% from ratios and from Padé approximants to the logarithmic derivative series. Padé approximants to  $\chi^{4/7}$  yield four figure accuracy. In the region  $-0.5 < \alpha < 0$  the analysis is complicated by the presence of competing singularities closer to the origin than the physical singularity, as shown in figure 3. In such situations it is often possible to improve the analysis by using transformations to move the physical singularity closer to the origin. An Euler transformation of the form

$$K'' = \frac{K}{1 + aK}$$

has the effect of moving the antiferromagnetic singularity on the negative real axis further away, and gives much improved consistency in the Padé approximants. We have also tried a variety of transformations which expand the imaginary axis and contract the real axis, in conjunction with Euler transformations, but no significant improvement is obtained. In table 2 we present some results of our analysis for the case  $\alpha = -0.3$ . As  $\alpha$  approaches -0.5 and the critical coupling  $K_c$  approaches infinity, the analysis becomes increasingly difficult and cannot be carried beyond about -0.35or -0.4.



Figure 3. Singularities in the complex K plane for the ferromagnetic susceptibility. The full circle is the ferromagnetic critical point, which lies further and further outside the disc of convergence of the series as  $\alpha \rightarrow -0.5$ .

In the 'modulated' region  $\alpha < -0.5$  it is necessary to carry out a systematic analysis of  $\chi(q)$  series for the entire range of q values. (Throughout this paper, we restrict qto be in the diagonal direction, i.e. q = q(1, 1).) If there is a transition from the disordered phase to an incommensurate modulated phase then we would expect to find a critical wavenumber  $q_c(\alpha)$  for which  $\chi(q)$  shows a consistent singularity on the positive real axis. Such behaviour is seen in the two-dimensional ANNNI model (Oitmaa 1985). Since in this case we are seeking the location of the lower transition line (see figure 2(b)), which passes through the point  $(0, -K_0)$ , it is more convenient to write  $K = \beta K'$  ( $\beta = \alpha^{-1}$ ) and to obtain single variable series in K' = J'/kT. We then look for singularities on the negative real axis of the complex K' plane. There will, in all cases, be interference from a closer singularity on the positive real axis, which corresponds to the upper branch in figure 2(b). An Euler transformation is used to expand the positive axis and contract the negative axis to bring the physical singularity closest to the origin.

For  $\beta = 0$  the series for q = 0.25 is the nearest-neighbour Ising staggered susceptibility and shows a power law singularity of the form (4) with  $K'_c = -0.4407$  and  $\gamma = 1.75$ . As  $\beta$  becomes negative the series for q = 0.25 no longer show a consistent pole on the negative real axis but rather a complex conjugate pair. However it is possible to find

| <b>Table 2.</b> Analysis of susceptibility series for the case $\alpha = -0.3$ . (a) Coefficients of the |
|----------------------------------------------------------------------------------------------------------|
| series $\chi(K)$ and of the series $\chi(K'')$ with $K'' = K/(1+2.5K)$ , (b) poles of Padé               |
| approximants to logarithmic derivative series, (c) poles of Padé approximants to $\chi^{4/7}$ .          |

| K series       |                                                                                                                                                                                                                                                                                                                   | K" series                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.0            |                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 2.8            |                                                                                                                                                                                                                                                                                                                   | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 3.48           |                                                                                                                                                                                                                                                                                                                   | 10.48                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 3.730          | 666 667                                                                                                                                                                                                                                                                                                           | 38.63                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 666 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| -3.750         | 8                                                                                                                                                                                                                                                                                                                 | 133.22                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 11.193         | 637 33                                                                                                                                                                                                                                                                                                            | 440.40                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60 637 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| -3.762         | 563 2                                                                                                                                                                                                                                                                                                             | 1 437.71                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 55.106         | 632 78                                                                                                                                                                                                                                                                                                            | 4 784.54                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| -131.045       | 0136                                                                                                                                                                                                                                                                                                              | 16 639.98                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 264.175        | 3560                                                                                                                                                                                                                                                                                                              | 60 857.30                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| -716.964       | 0975                                                                                                                                                                                                                                                                                                              | 230 808.28                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 2187.751       | 839                                                                                                                                                                                                                                                                                                               | 887 100.41                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| K series       |                                                                                                                                                                                                                                                                                                                   | K" series                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| -0.3205,       |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $0.0291 \pm 0$ | .5761i                                                                                                                                                                                                                                                                                                            | $0.2669 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .1786i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.5998, -(     | 0.3206,                                                                                                                                                                                                                                                                                                           | $0.2422 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0429i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $0.0304 \pm 0$ | .5781i                                                                                                                                                                                                                                                                                                            | $0.2554 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .1985i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| -0.3205,       |                                                                                                                                                                                                                                                                                                                   | $0.2849 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0483i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $0.0277 \pm 0$ | .5745i                                                                                                                                                                                                                                                                                                            | $0.2616 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .1852i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.3549, -(     | 0.3204,                                                                                                                                                                                                                                                                                                           | 0.2424                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $0.0354 \pm 0$ | .5748i                                                                                                                                                                                                                                                                                                            | $0.2461 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .2086i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 0.9930, -(     | 0.3203,                                                                                                                                                                                                                                                                                                           | 0.2473                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $0.0421 \pm 0$ | .5753i                                                                                                                                                                                                                                                                                                            | $0.2408 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .2080i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| [4, 7]         | [5, 6]                                                                                                                                                                                                                                                                                                            | [6, 5]                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [7, 4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [4, 6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [5, 5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [6, 4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.0645         | 1.0453                                                                                                                                                                                                                                                                                                            | 1.0801                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0.2889         | 0.2916                                                                                                                                                                                                                                                                                                            | 0.2864                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                |                                                                                                                                                                                                                                                                                                                   | $K_{c}'' = 0.288 \pm$                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 0.002 gives H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $K_{\rm c} = 1.03 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                | K series<br>1.0<br>2.8<br>3.48<br>3.730<br>-3.750<br>11.193<br>-3.762<br>55.106<br>-131.045<br>264.175<br>-716.964<br>2187.751<br>K series<br>-0.3205,<br>$0.0291 \pm 0$<br>1.5998, $-(0.0304 \pm 0-0.3205$ ,<br>$0.0277 \pm 0$<br>1.3549, $-(0.0354 \pm 00.0354 \pm 00.0354 \pm 00.0421 \pm 0[4, 7]1.06450.2889$ | K series         1.0         2.8         3.48         3.730 666 667 $-3.750 8$ 11.193 637 33 $-3.762 563 2$ 55.106 632 78 $-131.045 013 6$ 264.175 356 0 $-716.964 097 5$ 2187.751 839         K series $-0.3205$ , $0.0291 \pm 0.5761i$ 1.5998, $-0.3206$ , $0.0304 \pm 0.5781i$ $-0.3205$ , $0.0277 \pm 0.5745i$ $1.3549, -0.3204$ , $0.0354 \pm 0.5748i$ $0.9930, -0.3203,$ $0.0421 \pm 0.5753i$ [4, 7]       [5, 6]         1.0645       1.0453 $0.2889$ 0.2916 | K series         K" series           1.0         1.0           2.8         2.8           3.48         10.44           3.730 666 667         38.61           -3.750 8         133.22           11.193 637 33         440.44           -3.750 8         133.22           11.193 637 33         440.44           -3.762 563 2         1 437.77           55.106 632 78         4 784.55           -131.045 013 6         16 639.92           264.175 356 0         60 857.33           -716.964 097 5         230 808.22           2187.751 839         887 100.44           K series         K" series           -0.3205,         0.2462 ± 0           0.0291 ± 0.5761i         0.2669 ± 0           1.5998, -0.3206,         0.2422 ± 0           0.0304 ± 0.5781i         0.2554 ± 0           -0.3205,         0.2849 ± 0           0.0277 ± 0.5745i         0.2616 ± 0           0.3549, -0.3204,         0.2424           0.0354 ± 0.5778i         0.2461 ± 0           0.9930, -0.3203,         0.2473           0.0421 ± 0.5753i         0.2408 ± 0           [4, 7]         [5, 6]         [6, 5] | K series         K" series           1.0         1.0           2.8         2.8           3.48         10.48           3.730 666 667         38.630 666 67           -3.750 8         133.229 2           11.193 637 33         440.460 637 3           -3.762 563 2         1 437.774 570           55.106 632 78         4 784.540 435           -131.045 013 6         16 639.989 43           264.175 356 0         60 857.360 21           -716.964 097 5         230 808.285 3           2187.751 839         887 100.474 7           K series         K" series           -0.3205,         0.2669 $\pm$ 0.1786i           0.57451         0.2669 $\pm$ 0.1786i           1.5998, -0.3206,         0.2422 $\pm$ 0.0429i           0.0304 $\pm$ 0.5781i         0.2554 $\pm$ 0.1985i           -0.3205,         0.2849 $\pm$ 0.0483i           0.0277 $\pm$ 0.5745i         0.2616 $\pm$ 0.1852i           1.3549, -0.3204,         0.2424           0.0354 $\pm$ 0.5748i         0.2408 $\pm$ 0.2080i           [4, 7]         [5, 6]         [6, 5]         [7, 4]           1.0645         1.0453         1.0801 —         0.2864         0.2898 | K series         K" series           1.0         1.0           2.8         2.8           3.48         10.48           3.730 666 667         38.630 666 67           -3.750 8         133.229 2           11.193 637 33         440.460 637 3           -3.762 563 2         1 437.774 570           55.106 632 78         4 784.540 435           -131.045 013 6         16 639.989 43           -264.175 356 0         60 857.360 21           -716.964 097 5         230 808.285 3           2187.751 839         887 100.474 7           2187.751 839         887 100.474 7           K series         K" series           -0.3205,         0.2869 ± 0.1786i           1.5998, -0.3206,         0.2422 ± 0.0429i           0.0304 ± 0.5781i         0.2554 ± 0.1985i           -0.3205,         0.2849 ± 0.0483i           0.0277 ± 0.5745i         0.2616 ± 0.1852i           1.3549, -0.3204,         0.2424           0.0354 ± 0.5778i         0.2408 ± 0.2086i           0.9930, -0.3203,         0.2473           0.0421 ± 0.5753i         0.2408 ± 0.2080i           [4, 7]         [5, 6]         [6, 5]         [7, 4]         [4, 6]           1.064 | K series         K" series           1.0         1.0           2.8         2.8           3.48         10.48           3.730 666 667         38.630 666 67           -3.750 8         133.229 2           11.193 637 33         440.460 637 3           -3.762 563 2         1 437.774 570           55.106 632 78         4 784.540 435           -131.045 013 6         16 639.989 43           264.175 356 0         60 857.360 21           -716.964 097 5         230 808.285 3           2187.751 839         887 100.474 7           K series         K" series           -0.3205,         0.2849 ± 0.0429i           0.0304 ± 0.5781i         0.2554 ± 0.1985i           -0.3205,         0.2849 ± 0.0483i           0.0277 ± 0.5745i         0.2616 ± 0.1852i           1.3549, -0.3204,         0.2424           0.0354 ± 0.5748i         0.2461 ± 0.2086i           0.9930, -0.3203,         0.2473           0.0421 ± 0.5753i         0.2408 ± 0.2080i           [4, 7]         [5, 6]         [6, 5]         [7, 4]         [4, 6]         [5, 5]           1.0645         1.0453         1.0801         -         1.0262 |  |

a wavenumber for which  $\chi(q)$  does show a consistent singularity on the axis. In table 3 we present a summary of the analysis for  $\beta = -1.0$ , a wavenumber q = 0.22 giving, in this case, the most consistent singularity. If this represents a transition to an incommensurate phase then there are arguments for expecting the asymptotic behaviour to be of the Kosterlitz-Thouless form  $\exp[c(1-K/K_c)^{-\gamma}]$ . Guttmann (1978) has suggested that, to distinguish between an essential singularity of this form and a conventional power law singularity of the form (4), one should look at the second logarithmic derivative. An algebraic singularity in the original series would give a simple pole with residue 1 whereas an essential singularity of the Kosterlitz-Thouless form would give a simple pole with residue  $1+\gamma$ . In the present case, for the  $\beta = -1.0$  series, the residue is around 1.4-1.5, which is consistent with a Kosterlitz-Thouless transition, with  $\gamma = \frac{1}{2}$ .

The results of our analysis are summarised in figures 4 and 5. On the ferromagnetic side the locus of the critical temperature agrees very well with the Monte Carlo (MC) results of Landau and Binder (1985). However, on the modulated side our critical line deviates significantly from the MC first-order transition temperature. Moreover

**Table 3.** Analysis of susceptibility series for  $\beta = -1.0$  with wavenumber q = 0.22. (a) Coefficients of series  $\chi(K')$  and of the Euler transformed series  $\chi(K'')$ , with K'' = K'/(1-5K'), (b) position of pole on negative real axis and residue from Padé approximants to logarithmic derivative series, (c) position of pole on negative real axis and residue from Padé approximants to second logarithmic derivative series.

| ( <i>a</i> ) | K' series            | K" series         |
|--------------|----------------------|-------------------|
|              | 1.0                  | 1.0               |
|              | -4.468 631 201 90    | -4.468 631 201 90 |
|              | 11.968 664 818 6     | 34.311 820 828 0  |
|              | -32.713 586 906 0    | -264.116 015 139  |
|              | 56.268 674 673 6     | 2 003.201 239 89  |
|              | -225.185 749 117     | -15 034.824 189 0 |
|              | -2.186 304 493 91    | 111 953.159 788   |
|              | -2 375.518 431 62    | -828 350.977 021  |
|              | -6 914.354 079 35    | 6 096 159.559 92  |
|              | -44 681.717 671 7    | -44 652 729.763 1 |
|              | -201 308.393 489     | 325 688 842.249   |
|              | -1042 828.304 51     | -2366 449 154.69  |
| ( <b>b</b> ) | K' series            | K" series         |
| [4, 6]       | -0.5463 (2.025)      | -0.1464 (2.025)   |
| [5, 5]       | -0.5463 (2.025)      | -0.1464 (2.025)   |
| [6, 4]       | -0.4405 (0.459)      | -0.1464 (2.024)   |
| [4, 5]       | -0.5475 (2.046)      | -0.1466 (2.066)   |
| [5, 4]       | -0.6096 (3.474)      | -0.1466 (2.081)   |
| [4, 4]       | -0.6660 (5.832)      | -0.1449 (1.766)   |
| Estimate     | $K_{c}'' = -$        | $0.146 \pm 0.001$ |
|              | $K_{c}^{\prime} = -$ | $0.541 \pm 0.014$ |
| (c)          | K' series            | K" series         |
| [3, 6]       | -0.4684 (0.566)      | -0.1508 (1.438)   |
| [4, 5]       | -0.4475 (0.458)      | -0.1503 (1.394)   |
| [5, 4]       | -0.2313 (0.006)      | -0.1501 (1.374)   |
| [6, 3]       | -0.2734 (0.022)      | -0.1503 (1.392)   |
| [3, 5]       | -0.5089 (0.751)      | -0.1511 (1.468)   |
| [4, 4]       | -1.1198 (9.561)      | -0.1570 (2.318)   |
| [5, 3]       | <b>—</b>             | -0.1511 (1.460)   |

our transition temperatures are higher than the MC values so that the discrepancy is not attributable to the series seeing a spinodal curve within the region of metastability. One possible explanation is that there are indeed two transitions and that the Monte Carlo work is picking up the lower one whereas the series are seeing the higher transition. This point is investigated further in the following section.

### 3. The free energy series

It is difficult, using series techniques, to unambiguously identify a first-order transition. The only practical approach is the technique of 'free energy matching', which uses



Figure 4. Variation of transition temperature with  $\alpha = J'/J$ , as determined from hightemperature series. The crosses are Monte Carlo estimates from Landau and Binder (1985). The chain curve is the asymptote corresponding to  $J \rightarrow 0$ , kT/J' = -2.27.



Figure 5. The singularities of f(K, K') as determined from high-temperature series. The crosses are the Monte Carlo estimates for Landau and Binder (1985).

both high- and low-temperature expansions to evaluate the free energy as a function of temperature. If the two branches thus obtained meet smoothly, with no change in slope, then the transition is of second (or higher) order. If, however, there is a change in slope then the point of intersection is a first-order transition point. There are, of course, difficulties with this procedure since there is always numerical uncertainty in the values of the free energy thus obtained. However, the method has been successfully used in several recent studies (Velgakis and Ferer 1983, Styer 1985). We have therefore attempted to resolve the question of the nature of the transition to the modulated phase by this method.

A high-temperature expansion for the zero-field energy has been obtained by the same technique as used in the previous section for the susceptibility. The expansion has been computed through twelfth order, to which order there are 508 graphs. The expansion has the form

$$-\beta f = \ln 2 + 2 \ln \cosh K + 2 \ln \cosh K' + \sum_{n=1}^{\infty} \sum_{s=0}^{n} a_{ns} v^{n-s} w^{s}$$
(5)

where  $v = \tanh K$ ,  $w = \tanh K'$  as before. The coefficients  $\{a_{ns}\}$  are given in table 4. For any value of  $\alpha = K'/K$  we then obtain a series in the single variable K = J/kT. By computing Padé approximants to this series and evaluating these at a sequence of K values we obtain an estimate of the high-temperature 'branch' of the free energy.

|    |                 |     |      |                    | <u></u>              |        |                      |        |                |      |      |    |                 |
|----|-----------------|-----|------|--------------------|----------------------|--------|----------------------|--------|----------------|------|------|----|-----------------|
|    | s               |     |      |                    |                      |        |                      |        |                |      |      |    |                 |
| n  | 0               | 1   | 2    | 3                  | 4                    | 5      | 6                    | 7      | 8              | 9    | 10   | 11 | 12              |
| 3  | 0               | 2   | 0    | 0                  |                      |        |                      |        |                |      |      |    |                 |
| 4  | 1               | 0   | 4    | 0                  | 1                    |        |                      |        |                |      |      |    |                 |
| 5  | 0               | 12  | 0    | 14                 | 0                    | 0      |                      |        |                |      |      |    |                 |
| 6  | 2               | 0   | 73   | 0                  | 36                   | 0      | 2                    |        |                |      |      |    |                 |
| 7  | 0               | 32  | 0    | 356                | 0                    | 94     | 0                    | 0      |                |      |      |    |                 |
| 8  | 4 <u>1</u>      | 0   | 316  | 0                  | 1 540                | 0      | 236                  | 0      | $4\frac{1}{2}$ |      |      |    |                 |
| 9  | 0               | 92  | 0    | 2 450 <del>3</del> | 0                    | 6 180  | 0                    | 618    | 0              | 0    |      |    |                 |
| 0  | 12              | 0   | 1178 | Ő                  | 15 964               | 0      | 23 353               | 0      | 1 556          | 0    | 12   |    |                 |
| 11 | 0               | 316 | 0    | 11 892             | 0                    | 91 236 | 0                    | 84 028 | 0              | 3978 | 0    | 0  |                 |
| 12 | $37\frac{1}{3}$ | 0   | 4988 | 0                  | $101\ 333rac{1}{2}$ | 0      | 472 073 <del>1</del> | 0      | 291 106        | 0    | 9956 | 0  | $37\frac{1}{3}$ |

Table 4. Coefficients of the high-temperature free energy expansion (5).

A low-temperature expansion for the free energy, valid in the modulated region, has been obtained by starting from the ordered chessboard state and enumerating configurations with a small number of overturned spins. Rather than use the partial generating function method (Sykes *et al* 1965), which becomes very complicated in the present case because of the large number of sublattices, we have used a more primitive approach. The configurations have been enumerated by hand and a computer program written to evaluate the lattice embedding constants. The series is given by

$$-\beta f = 2|K'| + v^2 + 2v^3 + (u + 2\frac{1}{2} + u^{-1})v^4 + 6(u + u^{-1})v^3 + (2u^2 + 22u - 10\frac{2}{3} + 22u^{-1} + 2u^{-2})v^6 + (20u^2 + 62u - 34 + 62u^{-1} + 20u^{-2})v^7 + \dots$$
(6)

where  $v = \exp(-4|K'|)$ ,  $u = \exp(-4K)$ . Padé approximants are then used to evaluate the low-temperature free energy.

Results are presented for the case  $\alpha = -1$ , which is typical. In table 5 we give numerical estimates for the high- and low-temperature free energies, obtained from the highest-order Padé approximants. These results are used as the basis of the plot shown in figure 6. As can be seen from this figure there is no apparent crossing of the two branches, and hence no indication of a first-order transition. At the positions of the transition obtained in the previous section ( $K \approx 0.54$ ) and that obtained from the diagram of Landau and Binder (K = 0.71) the high-temperature free energy lies clearly below the low-temperature curve. It may be that our error estimates for the hightemperature free energy for  $K \ge 0.6$  are too optimistic. Indeed, if one were to disregard

| (a)                     | K           |             |         |        |        |        |        |  |  |  |  |  |
|-------------------------|-------------|-------------|---------|--------|--------|--------|--------|--|--|--|--|--|
| [N, D]                  | 0.45        | 0.50        | 0.55    | 0.60   | 0.65   | 0.70   | 0.75   |  |  |  |  |  |
| [5, 7]                  | 1.007       | 1.075       | 1.150   | 1.232  | 1.321  | 1.417  | 1.519  |  |  |  |  |  |
| [6, 6]                  | 1.007       | 1.076       | 1.151   | 1.234  | 1.326  | 1.426  | 1.536  |  |  |  |  |  |
| [7, 5]                  | 1.006       | 1.074       | 1.148   | 1.229  | 1.316  | 1.409  | 1.509  |  |  |  |  |  |
| [5,6]                   | 1.008       | 1.078       | 1.155   | 1.242  | 1.334  | 1.447  | 1.570  |  |  |  |  |  |
| [6, 5]                  | 1.007       | 1.075       | 1.149   | 1.230  | 1.318  | 1.413  | 1.515  |  |  |  |  |  |
| [4,6]                   | 1.007       | 1.076       | 1.151   | 1.234  | 1.326  | 1.426  | 1.536  |  |  |  |  |  |
| [5, 5]                  | 1.006       | 1.074       | 1.148   | 1.229  | 1.316  | 1.409  | 1.509  |  |  |  |  |  |
| [6, 4]                  | 1.007       | 1.076       | 1.151   | 1.234  | 1.326  | 1.426  | 1.535  |  |  |  |  |  |
| Estimate                | 1.007       | 1.076       | 1.151   | 1.234  | 1.325  | 1.425  | 1.53   |  |  |  |  |  |
|                         | $\pm 0.001$ | $\pm 0.002$ | ±0.003  | ±0.004 | ±0.01  | ±0.015 | ±0.02  |  |  |  |  |  |
| ( <b>b</b> )            |             |             |         | K      |        |        |        |  |  |  |  |  |
| [ <i>N</i> , <i>D</i> ] | 0.45        | 0.50        | 0.55    | 0.60   | 0.65   | 0.70   | 0.75   |  |  |  |  |  |
| [2, 5]                  | 0.994       | 1.036       | 1.120   | 1.2117 | 1.3072 | 1.4046 | 1.5029 |  |  |  |  |  |
| [3, 4]                  | 1.011       | 1.037       | 1.120   | 1.2117 | 1.3072 | 1.4046 | 1.5029 |  |  |  |  |  |
| [4, 3]                  | 1.004       | 1.037       | 1.120   | 1.2117 | 1.3072 | 1.4046 | 1.5029 |  |  |  |  |  |
| [5, 2]                  | 0.988       | 1.036       | 1.120   | 1.2117 | 1.3072 | 1.4046 | 1.5029 |  |  |  |  |  |
| [2, 4]                  | 0.949       | 1.032       | 1.119   | 1.2116 | 1.3072 | 1.4046 | 1.5029 |  |  |  |  |  |
| [3, 3]                  | 0.897       | 1.066       | 1.122   | 1.2122 | 1.3074 | 1.4046 | 1.5029 |  |  |  |  |  |
| [4, 2]                  | 0.960       | 1.033       | 1.119   | 1.2116 | 1.3072 | 1.4046 | 1.5029 |  |  |  |  |  |
| Estimate                | 0.99        | 1.037       | 1.120   | 1.2117 | 1.3072 | 1.4046 | 1.5209 |  |  |  |  |  |
|                         | ±0.03       | ±0.003      | ±0.0005 |        |        |        |        |  |  |  |  |  |

**Table 5.** Estimates of  $-\beta f$  from (a) high- and (b) low-temperature expansions.



Figure 6. High- and low-temperature free energies for the case  $\alpha = -1$ . The arrows show the transition points obtained in this paper (ov) and by Landau and Binder (LB).

these points and extrapolate the high T curve from the clearly convergent values for  $K \leq 0.5$ , then it is conceivable that an intersection of the two curves, with a change in slope, might occur around the Landau-Binder esimate. However, it is also the case that if there exists an intermediate phase then one would not expect the high- and low-temperature series to converge to a single point of intersection and one might see the type of behaviour evident in figure 6.

## 4. Conclusions

The model we have studied in this paper is a very simple one, and yet has sufficiently subtle and rich behaviour as to remain only partially understood. In the regime where the third-neighbour interactions are ferromagnetic or weakly antiferromagnetic, the picture is clear and our results corroborate previous ones. When the third-neighbour interactions are sufficiently strongly antiferromagnetic, so that the ground state is the chessboard or staircase structure, our results are rather inconclusive. The series do show a transition, with some indication that it may be of Kosterlitz-Thouless form, at a temperature above the transition shown by the recent Monte Carlo work. This, and the fact that the free energy matching procedure shows no sign of a first-order transition, may be taken as favouring the picture of two separate transitions. However, the evidence is not clear cut and further studies of this model are clearly warranted.

## Acknowledgment

This work forms part of a project which is supported by the Australian Research Grants Scheme (ARGS).

## References